Abstract

Abstract This study focuses on the influence of the sea spray polydispersity on the vertical transport of momentum in a turbulent marine atmospheric boundary layer in high-wind conditions of a hurricane. The Eulerian multifluid model treating air and spray droplets of different sizes as interacting inter-penetrating continua is developed and its numerical solutions are analyzed. Several droplet size distribution spectra and correlation laws relating wind speed and spray production intensity are considered. Polydisperse model solutions have confirmed the difference between the roles small and large spray droplets play in modifying the turbulent momentum transport that have been previously identified by monodisperse spray models. The obtained results have also provided a physical explanation for the previously unreported phenomenon of the formation of thin low-eddy-viscosity “sliding” layers in strongly turbulent boundary layer flows laden with predominantly fine spray.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.