Abstract

The interaction of antimicrobial peptides with membrane lipids plays a major role in numerous physiological processes. In this study, polydiacetylene (PDA) vesicles were synthesized using 10, 12-tricosadiynoic acid (TRCDA) and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). These vesicles were applied as artificial membrane biosensor for the detection of plantaricin LD1 purified from Lactobacillus plantarum LD1. Plantaricin LD1 (200 μg/mL) was able to interact with PDA vesicles by changing the color from blue to red with colorimetric response 30.26 ± 0.59. Nisin (200 μg/mL), used as control, also changed the color of the vesicles with CR% 50.56 ± 0.98 validating the assay. The vesicles treated with nisin and plantaricin LD1 showed increased infrared absorbance at 1411.46 and 1000-1150 cm−1 indicated the interaction of bacteriocins with phospholipids and fatty acids, respectively suggesting membrane-acting nature of these bacteriocins. Further, microscopic observation of bacteriocin-treated vesicles showed several damages indicating the interaction of bacteriocins. These findings suggest that the PDA vesicles may be used as bio-mimetic sensor for the detection of bacteriocins produced by several probiotics in food and therapeutic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call