Abstract

The distribution, partitioning behavior, and diffusion of polycyclic aromatic hydrocarbons (PAHs) within sediment–porewater system were determined in two cores obtained from the Min-Zhe coastal mud of the East China Sea (ECS). Depth profiles of apparently dissolved PAH levels exhibited greater variabilities, with their elevated levels at depth and a high abundance of two-to three-ring PAHs observed. These distribution and composition patterns were inconsistent with the corresponding sediment PAHs, indicating differences in controlling factors for PAHs present in the system. In addition to compound's hydrophobicity, low detection of heavier PAHs in porewater was possibly correlated with the sediment transport process, as indicated by a relatively high weathering ratio in southern Min-Zhe coastal mud. PAH sorption affinity to the collected core sediments exhibited a generally decreasing trend downcore, as expressed by sediment–porewater partition coefficients. This was consistent with the higher content of porewater PAHs in deep core sediment. The established sediment total organic carbon (TOC)–porewater partitioning profiles in cores were predicted with amorphous organic carbon (AOC)-, coal tar-, and TOC-based distribution models, suggesting a dominant nonlinear sorption of PAHs to AOC. Through activity determinations, PAH diffusion within porewater was elucidated, with significant upward and downward mass transfer for PAHs occurring in both cores. The upward diffusion in the core collected from northern Min-Zhe coastal mud was in significant association with sediment TOC. This suggests that sediment TOC (especially AOC)-desorption of lighter PAHs into porewater, and therefore the possibility of their participation in environmental cycling. Baseline toxicity potential and toxic unit calculations indicated a relatively low exposure risk for benthic organisms to porewater PAHs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call