Abstract

Bioturbation by the burrowing crab Helice tiensinensis was investigated to determine its impact on polycyclic aromatic hydrocarbon (PAH)-contaminated estuarine sediments. The concentrations of 16 U.S. Environmental Protection Agency (U.S. EPA) priority PAHs in sediment and pore water from a crab bed (including surface and burrow samples) and a control area, as well as in crabs, were measured. The total concentration of the 16 U.S. EPA priority PAHs in surface sediment of the crab bed (average 2,772 ng/g dry weight) was significantly higher than in the control area (1,173 ng/g dry weight). In the crab bed, the total concentration of PAHs in burrow sediment (1,239 ng/g dry weight) was lower than in surface sediment, and a similar trend was found for most of the individual PAHs, except for indeno[1,2,3-cd]pyrene, and benzo[ghi]perylene. The enhanced PAH desorption in the burrow, which could be attributed to the increase in dissolved organic matter in pore water as well as the mechanical mixing by the crab, is expected to increase PAH flux to the sea. In addition to increased flushing to the sea, incorporation of PAHs in crab biomass and metabolism of PAHs by the crab, stimulated microbial degradation, was proposed as an ignorable factor that lowered the PAH concentration in burrow sediment, because crab bioturbation increases the abundance and activity of microorganisms through several means. Log K(OW) and log K(OC) correlated well for individual PAHs in sediment in the control area, although this correlation was poor for sediments in the crab bed. The log biota-sediment accumulation factor (BSAF) of PAHs exhibited a negative relationship with log K(OW), suggesting that the bioaccumulation of sorbed PAHs was controlled primarily by their bioavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.