Abstract

We discuss the formation of polycrystalline microstructures within the framework of phase field theory. First, the model is tested for crystal nucleation in a hard sphere system. It is shown that, when evaluating the model parameters from molecular dynamics simulations, the phase field theory predicts the nucleation barrier for hard spheres accurately. The formation of spherulites is described by an extension of the model that incorporates branching with a definite orientational mismatch. This effect is induced by a metastable minimum in the orientational free energy. Spherulites are an extreme example of polycrystalline growth, a phenomenon that results from the quenching of orientational defects (grain boundaries) into the solid as the ratio of the rotational to the translational diffusion coefficient is reduced, as is found at high undercoolings. It is demonstrated that a broad variety of spherulitic patterns can be recovered by changing only a few model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.