Abstract
Planar metal–diamond–metal photoconductive devices have been fabricated from free standing large grain (20–30 μm) polycrystalline thin film diamond. An interdigitated electrode design with spacings of 20 μm was used to produce effective UV photodetecting devices at bias values in the range 0.1–10 V. A methane-air treatment has been used to modify the structures such that unprecedented performance characteristics have been recorded (106 higher response to 200 nm than visible wavelengths, <0.1 nA dark currents); spectral features similar to those observed in natural diamond crystals have been observed indicating that the treatment used led to near ideal electronic characteristics from polycrystalline material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.