Abstract

A polycrystalline boron-doped diamond (BDD) electrolyte solution-gate field effect transistor (SGFET) for use as a pH sensor was developed. The polycrystalline diamond films with a boron-doped layer possessed semiconducting properties that were comparable to hydrogen-terminated non-doped diamond. The hydrogen-terminated BDD surface was successfully transferred to a partially oxygen-terminated surface by ozone exposure, and its SGFET current–voltage (I–V) characteristics were evaluated with bias voltages within the potential window of diamond. The drain-source current(Ids)–drain-source voltage(Vds) characteristics showed pinch-off and saturation. In addition, they stably operated in electrolyte solutions with pH values from 2 to 12. The transfer characteristics exhibited a pH sensitivity of approximately 30mV/pH, which is comparable with the pH sensitivity of the conventional oxygen-terminated non-doped SGFET and the single-crystal BDD SGFET investigated in our previous work. Furthermore, the BDD SGFET exhibited improved long-term stability, and the coefficient of variation (CV) of Ids for 10 months was up to 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.