Abstract

Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo. Previous studies have shown that maternal Tramtrack69 facilitates maternal GAGA-binding factor and Heat shock factor binding to the torso response element (tor-RE) to initiate tailless repression in the stage-4 embryo. Chromatin-immunoprecipitation and genetic-interaction studies exhibit that maternally-deposited Polycomb repressive complex 1 (PRC1) recruited by the tor-RE-associated Tramtrack69 represses tailless expression in the stage-4 embryo. A noncanonical Polycomb-group response element (PRE) is mapped to the tailless proximal region. High levels of Bric-a-brac, Tramtrack, and Broad (BTB)-domain proteins are fundamental for maintaining tailless repression in the stage-8 to -10 embryos. Trmtrack69 sporadically distributes in the linear BTB-domain oligomer, which recruits and retains a high level of PRC1 near the GCCAT cluster for repressing tll expression in the stage-14 embryos. Disrupting the retention of PRC1 decreases the levels of PRC1 and Pleiohomeotic protein substantially on the PRE and causes tailless derepression in the stage-14 embryo. Furthermore, the retained PRC1 potentially serves as a second foundation for assembling the well-characterized polymer of the Sterile alpha motif domain in Polyhomeotic protein, which compacts chromatin to maintain the repressed state of tailless in the embryos after stage 14.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.