Abstract
DDX5 (p68) upregulation has been linked with various cancers of different origins, especially Colon Adenocarcinomas. Similarly, across cancers, MGMT has been identified as the major contributor of chemoresistance against DNA alkylating agents like Temozolomide (TMZ). TMZ is an emerging potent chemotherapeutic agent across cancers under the arena of drug repurposing. Recent studies have established that patients with open MGMT promoters are prone to be innately resistant or acquire resistance against TMZ compared to its closed conformation. However, not much is known about the transcriptional regulation of MGMT gene in the context of colon cancer. This necessitates studying MGMT gene regulation which directly impacts the cellular potential to develop chemoresistance against alkylating agents. Our study aims to uncover an unidentified mechanism of DDX5-mediated MGMT gene regulation. Experimentally, we found that both mRNA and protein expression levels of MGMT were elevated in response to p68 overexpression in multiple human colon cancer cell lines and vice-versa. Since p68 cannot directly interact with the MGMT promoter, transcription factors viz., β-catenin, RelA (p65) and SP1 were also studied as reported contributors. Through co-immunoprecipitation and GST-pull-down studies, p68 was established as an interacting partner of SP1 in addition to β-catenin and NF-κB (p50-p65). Mechanistically, luciferase reporter and chromatin-immunoprecipitation assays demonstrated that p68 interacts with the MGMT promoter via TCF4-LEF, RelA and SP1 sites to enhance its transcription. To the best of our knowledge, this is the first report of p68 as a transcriptional co-activator of MGMT promoter and our study identifies p68 as a novel and master regulator of MGMT gene expression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.