Abstract

MicroRNAs (miRNAs) are a class of noncoding RNAs that are being explored as a new type of disease biomarkers. The nanopore single-molecule sensor offers a potential noninvasive tool to detect miRNAs for diagnostics and prognosis applications. However, one of the challenges that limits its clinical applications is the presence of a large variety of nontarget nucleic acids in the biofluid extracts. Upon interacting with the nanopore, nontarget nucleic acids produce "contaminative" nanopore signals that interfere with target miRNA discrimination, thus severely lowering the accuracy in target miRNA detection. We have reported a novel method that utilizes a designed polycationic peptide-PNA probe to specifically guide the target miRNA migration toward the nanopore, whereas any nontarget nucleic acids without the probe bound is rejected by the nanopore. Consequently, nontarget species are driven away from the nanopore and only the target miRNA can be detected at low concentration. This method is also able to discriminate miRNAs with single-nucleotide difference by using PNA to capture miRNA. Considering the significance and impact of this substantial advance for the future miRNA detection in biofluid samples, we prepared this detailed protocol, by which the readers can view the experimental procedure, data analysis, and resulting explanation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call