Abstract

Cadmium is highly toxic and one of the most dangerous metal pollutants in soil, and poses a serious threat to human health through soil-crop-food chain transmission. Polyaspartic acid (PASP) is a biodegradable additive that is environment-friendly compared to traditional chelating agents. Current studies have explored its effect on auxiliary phytoextraction at a laboratory scale; however, the method is still rarely reported at the field scale. Therefore, this study used two ecotypes of Pennisetum sinese in a field experiment for 3 years in Jiaoxi Township, Liuyang City, Hunan Province, China, to understand the effect of PASP on the phytoremediation of Cd-contaminated soil and soil quality through long-term field studies. Moreover, because the soil microbial community responds well to the phytoremediation effect of heavy metal (including Cd)-contaminated soil, the changes in rhizosphere soil microbial community diversity and composition were analyzed. After 2 years of PASP-enhanced phytoremediation, the PASP application increased the total Cd reduction in soil by 237 % and 255 %, and the soil DTPA-extractable Cd content decreased to 0.092 and 0.087 mg kg−1. When the application of PASP ceased in the third year, the two ecotypes of P. sinese obtained after harvest could achieve feed safety. Our study showed that the application of PASP could significantly increase the Cd extraction capacity and shoot biomass of P. sinese, and maintain soil health by optimizing the composition and structure of rhizosphere bacterial communities. The rhizosphere bacterial community structure was improved and dominated by Acidobacteriota, Proteobacteria, and Chloroflexi at the phylum level, and the increased abundance of Acetobacter, Enterobacter, Pseudomonas, and Stenotrophomonas at the genus level may promote heavy metal detoxification in soil, plant growth, and phytoremediation. Long-term field monitoring demonstrated that the low-cost and eco-friendly features of PASP made it a good candidate for enhancing phytoextraction efficiency and regulating soil microbial communities for remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call