Abstract

Phenolic compounds enter soil as a result of root exudation and plant residue decomposition, but their impacts on soil microbial communities are poorly understood. In this experiment, effects of syringic acid on cucumber rhizosphere microbial communities were evaluated. Rhizosphere bacterial and fungal community structures and abundances were analyzed with PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR, respectively. Results showed that syringic acid inhibited cucumber seedling growth at concentrations of 0.05 to 0.2 μmol/g soil, and increased rhizosphere soil dehydrogenase activity, microbial biomass carbon content, bacterial 16S rRNA gene and fungal ITS rRNA gene densities, and decreased the bacteria-to-fungi ratio at concentrations of 0.02 to 0.2 μmol/g soil. Syringic acid also changed rhizosphere bacterial and fungal community structures: it decreased the richness, evenness, and diversity indices of rhizosphere bacterial community but had no significant influences on that of fungal community, indicating that syringic acid had different influence on bacterial and fungal communities. Taken together, these results showed that syringic acid inhibited cucumber growth and altered rhizosphere microbial communities, suggesting that syringic acid plays some role in the communication between plants and soil microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call