Abstract

During a systematic search of the RE-Au-Sn (RE = La, Ce, Pr, Nd) ternary phase space, a series of compounds with the general formula REAu1.5Sn0.5 have been identified. These phases can be synthesized by arc melting the elemental metals, followed by annealing. The crystal structures were solved using single-crystal X-ray diffraction, with the composition confirmed by energy-dispersive X-ray spectroscopy. All four compounds crystallize in orthorhombic space group Imma with the CeCu2-type structure. Most notable in these compounds is the polyanionic backbone composed of a single statistically mixed Au/Sn position, which creates a puckered hexagonal bonding network separated by the rare-earth atoms. Electronic structure calculations indicate that the Au 5d bands are dominant in the density of states, while the crystal orbital Hamilton population (-COHP) curves demonstrate Au-Au and Au-Sn interactions, which stabilize the crystal structure. Likewise, a qualitative electron localization function analysis supports the existence of a polyanionic network, and a Bader charge analysis implies anionic character on Au and Sn. The preference for these compounds to adopt the simple CeCu2-type structure is also determined using density functional theory calculations and compared to related compounds to establish a better picture of the unusual behavior of Au in polar intermetallic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.