Abstract

Polyamines are polycationic alkyl-amines abundant in proliferating stem and cancer cells. How these metabolites influence numerous cellular functions remains unclear. Here we show that polyamine levels decrease during differentiation and that inhibiting polyamine synthesis leads to a differentiated-like cell state. Polyamines concentrate in the nucleus and are further enriched in the nucleoli of cells in culture and in vivo . Loss of polyamines drives changes in chromatin accessibility that correlate with altered histone post-translational modifications. Polyamines interact electrostatically with DNA on the nucleosome core, stabilizing histone tails in conformations accessible to modifying enzymes. These data reveal a mechanism by which an abundant metabolite influences chromatin structure and function in a non-sequence specific manner, facilitating chromatin remodeling during reprogramming and limiting it during fate commitment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.