Abstract
Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family Leguminosae constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within Leguminosae and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family. As linking plant physiological behavior with “big data” available in “omics” is an essential step to improve our understanding of legumes responses to global change, we also examined integrative MultiOmics approaches available to decrypt the interface legumes-PAs-abiotic and biotic stress interactions. These approaches are expected to accelerate the identification of stress tolerant phenotypes and the design of new biotechnological strategies to increase their yield and adaptation to marginal environments, making better use of available plant genetic resources.
Highlights
Polyamines (PAs) are organic polycations, acknowledged as regulators of plant growth, development and stress responses, being putrescine (Put), spermidine (Spd), and spermine (Spm) the most related to this physiological role (Cohen, 1998)
This review explores the contribution made by studies on legume species on the basic knowledge of PAs metabolism, their role in tolerance to biotic and abiotic stresses, and the establishment of mutualistic relationships relevant to the physiology of plants and the environment
Exogenous PAs application has shown to mitigate drought stress in several legumes such as Phaseolus vulgaris (Torabian et al, 2018a; Torabian et al, 2018b), Trifolium repens (Zhang et al, 2018), and Vigna radiata (Farhangi-Abriz et al, 2017), whereas the mechanisms involved in the PAs-mediated alleviation of drought include the crosstalk with several phytohormones, the improvement of plant water status, stress signaling, antioxidant biosynthesis, melatonin production, and DNA protection
Summary
Polyamines (PAs) are organic polycations, acknowledged as regulators of plant growth, development and stress responses, being putrescine (Put), spermidine (Spd), and spermine (Spm) the most related to this physiological role (Cohen, 1998). A high number of metabolites and enzymes participate in PAs metabolism (see Calzadilla et al, 2014 for an extensive description). The diamine Put can be synthesized directly from ornithine by the enzyme ornithine decarboxylase (ODC, EC 4.1.1.17) or indirectly, via a series of intermediates following decarboxylation of arginine by arginine decarboxylase (ADC, EC 4.1.1.19) (Figure 1). Spd and Spm are synthesized from Put by successive additions of aminopropyl groups provided by decarboxylated S-adenosylmethionine (SAM), a metabolite derived
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.