Abstract

Like obligate intracellular parasites, viruses co-opt host cell resources to establish productive infections. Polyamines are key aliphatic molecules that perform important roles in cellular growth and proliferation. They are also needed for the successful multiplication of various viruses. Little is known about the effects of polyamines on Arteriviridae infections. Here, porcine reproductive and respiratory syndrome virus (PRRSV), an economically prominent porcine virus, was used to investigate virus–polyamine interactions. We found that PRRSV infection significantly downregulated the levels of cellular polyamines. Using an inhibitor or specific short interfering RNAs (siRNAs) of ornithine decarboxylase 1, a key anabolic enzyme involved in the classical de novo biosynthesis of polyamines, we found that polyamine depletion abrogated PRRSV proliferation, and this effect was recoverable by adding exogenous spermidine and spermine, but not putrescine to the cells, suggesting that the host inhibits polyamine biosynthesis to restrict PRRSV proliferation. Further analysis revealed that the expression level of spermidine-spermine acetyltransferase 1 (SAT1), a catabolic enzyme that reduces spermidine and spermine levels, was upregulated during PRRSV infection, but conversely, SAT1 had an inhibitory effect on PRRSV reproduction. Our data show that polyamines are important molecules during PRRSV-host interactions, and polyamines and their biosynthetic pathways are potential therapeutic targets against PRRSV infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.