Abstract

Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) synthase (cGAS) is a universal double-stranded DNA (dsDNA) sensor that recognizes foreign and self-DNA in the cytoplasm and initiates innate immune responses and has been implicated in various infectious and non-infectious contexts. cGAS binds to the backbone of dsDNA and generates the second messenger, cGAMP, which activates the stimulator of interferon genes (STING). Here, we show that the endogenous polyamines spermine and spermidine attenuated cGAS activity and innate immune responses. Mechanistically, spermine and spermidine induced the transition of B-form DNA to Z-form DNA (Z-DNA), thereby decreasing its binding affinity with cGAS. Spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme in polyamine catabolism that decreases the cellular concentrations of spermine and spermidine, enhanced cGAS activation by inhibiting cellular Z-DNA accumulation; SAT1 deficiency promoted herpes simplex virus 1 (HSV-1) replication invivo. The results indicate that spermine and spermidine induce dsDNA to adopt the Z-form conformation and that SAT1-mediated polyamine metabolism orchestrates cGAS activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.