Abstract

Polyamidoamine-grafted silica nanoparticles were synthesized, characterized and investigated for the feasibility as pseudostationary phases in alkaline buffer for separation of cationic and anionic proteins, viz., lysozyme, cytochrome C, gamma globulin, and myoglobin. Neither bare silica nanoparticles nor polyamidoamines nor their mixtures as pseudostationary phases could lead to simultaneous separation of the four proteins. However, polyamidoamine-grafted silica nanoparticles not only suppressed the irreversible wall adsorption of the cationic lysozyme and cytochrome C, but also provided selectivity toward all the proteins. We found that polyamidoamine generation two-modified silica nanoparticles were the optimum pseudostationary phases with respect to detection sensitivity and separation efficiency; presence of the nanoparticles at 0.01% in the running buffer of 12.5 mM tetraborate/phosphate at pH 9.1 resulted in baseline resolution of the four proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.