Abstract
Capillary electrophoresis has been used extensively for protein separations, but interactions of proteins with the negative charge on the surface of fused silica capillary create band broadening and diminish the separation efficiency. Coatings developed to mask the negative charge of the capillary affect the electroosmotic flow. The method presented in this work addresses these concerns through the use of a two-layer coating of a semi-permanent phospholipid substrate and cetyltrimethylammonium bromide (CTAB). When used alone, phospholipid coating suppresses the electroosmotic flow but cannot be used to simultaneously separate anionic and cationic proteins. When used alone, CTAB creates a dynamic coating that facilitates the separation of cationic proteins with good efficiency, but reduces the separation efficiency of anionic proteins. The use of a hybrid phospholipid-CTAB surface coating alleviates protein adsorption, as demonstrated through a comparison of protein separations obtained with a bare fused silica capillary. The hybrid phospholipid-CTAB surface enables high efficiency separations of cationic and anionic proteins simultaneously. This work verifies the role of the hydrophobic tail of CTAB in developing a stable coating with an electroosmotic flow of 3.14 × 10−4 cm2V-1s-1 (n = 10) from the cathode to the anode at a pH of 7. The coating yields a stable electroosmotic flow even after 2 h of flushing with background electrolyte devoid of CTAB (n = 3) and six consecutive protein injections with no flush sequence between runs. The coating can be used with background electrolytes with pH values ranging from 4 to 8 while maintaining 1% RSD (n = 10) in the electroosmotic flow for each background electrolyte. Six model proteins, lysozyme, ribonuclease A, α-chymotrypsinogen A, enolase, transferrin, and α-1-antitrypsin, with pI values ranging from 4.4 to 11 were used to demonstrate the stability of the phospholipid-CTAB coating, the lack of protein interaction with the wall, and the utility of the coating for the separation of proteins of similar isoelectric points and of protein isoforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.