Abstract
In the research described here polyacrylonitrile (PAN)/polyvinyl alcohol (PVA) bicomponent nanofibers (NFs) were produced with different PVA content (10, 20, and 30 wt%) by an electrospinning method and tested for air filtration application. Morphological, structural, and physical properties of the PAN/PVA NFs were analyzed with scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET) characterization methods. The results showed that regular and beadless PVA NF synthesis was achieved for 10 and 20 wt% of PVA contents. Besides, 10 wt% PVA provided thinner diameter NFs, and the pore size of their membranes was also smaller compared to those of NFs containing 20 wt% PVA. Therefore, PAN/PVA nanofibrous membranes containing 10 wt% PVA with smaller pore size and thinner fiber diameter provided the lowest air permeability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.