Abstract
In this work, nanofibre membranes have been produced from polyvinyl alcohol (PVA), polycaprolactone (PCL), polyacrylonitrile (PAN), poly (vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), and polymer blend of PAN and polyurethane (PEU) using an electrospinning technique, and wound healing performance of the as-spun nanofibre membranes was examined in vivo using female Sprague-Dawley rats. To understand the nutrition effect, a wool protein was coated on PVA and PCL nanofibres and incorporated into PVA nanofibres via coelectrospinning of a PVA solution containing the wool protein. Silver nanoparticles were also applied to PVA nanofibres to improve antibacterial activity. It was found that the wound healing performance is mainly influenced by the porosity, air permeability, and surface wettability of the nanofibre membranes. A nanofibre membrane with good hydrophilicity and high porosity considerably facilitates the healing of wound especially at the early healing stage. However, the fiber diameter and antibacterial activity have little effect on the wound healing efficiency. As pores in nanofibre membranes are typically smaller than that of conventional cotton gauze, the nanofibre membrane should be able to decontaminate and prevent exogenous infections via sieve effect. This work provides basic understanding of material structure-property relationship for further design of efficient nanofibre-based wound dressing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.