Abstract

The controlled/living free-radical copolymerization of vinylidene chloride (VDC) with methyl acrylate (MeA) or acrylic acid (AA) was studied by the reversible addition–fragmentation chain transfer (RAFT) technique using a trithiocarbonate RAFT agent. The reactions were performed in 1,4-dioxane solution at 30 °C and led to good control and high chain-end functionality. P(VDC-co-MeA)-b-PAA, PAA-b-P(VDC-co-MeA), and PAA-b-P(VDC-co-AA) amphiphilic block copolymers were then prepared in the same conditions, starting either from a hydrophobic P(VDC-co-MeA) macromolecular RAFT (macro-RAFT) agent or from a hydrophilic PAA one. The advantage of the first synthesis pathway relies on the very good transfer efficiency to trithiocarbonate-ended P(VDC-co-MeA) and on the rapid consumption of the latter even when low percentages (10 mol %) of MeA comonomer are incorporated in the macro-RAFT agent. In contrast, for the second approach a rapid consumption of the macro-RAFT agent is only reached with 30 mol % of MeA in the ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call