Abstract
Thermo- and photoresponsive nanoreactors based on shell cross-linked micelles (SCMs) for the rhodium-catalyzed asymmetric transfer hydrogenation (ATH) of ketones have been developed from poly(2-oxazoline) triblock terpolymers. The nanoreactors incorporate thermoresponsive poly(2-isopropyl-2-oxazoline) as the hydrophilic corona and are covalently cross-linked with a photoswitchable spiropyran molecule. UV irradiation or changes in temperature trigger morphology switching of the polymer-based nanoreactors that alters the hydrophobicity in separate layers of the SCMs, resulting in dynamic substrate selectivity of the ATH in water. Control experiments and kinetic studies show that the thermoresponsive outer layer induces the gated behavior for more hydrophobic substrates, whereas the photoresponsive cross-linking layer induces the gated behavior for less hydrophobic substrates. The nanoreactors mimic the multichannels in Nature, transporting substrates and reagents into the catalytic core which can be controlled through external triggers such as temperature and light wavelengths. Additionally, the nanoreactors can be easily recovered and reused with continued high activity and selectivities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.