Abstract

ABSTRACTThe synthesis of poly(glyceryl glycerol) (PGG), a polymer featuring a polyethylene oxide backbone and 1,2‐diol groups in every repeating unit, is presented. PGG was prepared by monomer‐activated ring‐opening polymerization of (dl−1,2‐isopropylidene glyceryl) glycidyl ether, introducing a functional azido‐ or bromo‐head group to each chain. The 1,2‐diol groups, which were released by acidic deprotection, readily reacted with boronic acid derivatives, enabling the attachment of functional moieties under mild aqueous conditions. PGG was conjugated to poly(l‐lactide) (PLLA) via azide‐alkyne cycloaddition and the resulting copolymer assembled into nanoparticles of 70 nm diameter in aqueous solution. Labeling of the PGG–PLLA particles was achieved by simple mixing with a boronic acid‐functional fluorophore. The labeling efficiency was determined by fluorescence spectroscopy to be 85.5% for boronic acid‐functional rhodamine B compared with 0.2% for plain rhodamine B. The strong interaction of PGG with boronic acids is ascribed to its polyol structure. This study demonstrates the usefulness and versatility of PGG as a hydrophilic polymer for possible biomedical applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1822–1830

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call