Abstract

Shortage or malfunction of pulmonary surfactant in alveolar space leads to a critical condition termed respiratory distress syndrome (RDS). Surfactant replacement therapy, the major method to treat RDS, is an expensive treatment. In this paper, the effect of poly(ethylene glycol) (PEG) to improve dynamic surface activity of a bovine lipid extract surfactant (BLES) was studied by axisymmetric drop shape analysis (ADSA) and a captive bubble method. The activity of BLES + PEG mixtures was compared to that of a natural surfactant containing surfactant proteins A and D. When PEG was added into BLES mixtures, the surface tension hysteresis of BLES films was minimized when the films were compressed by more than 50%. PEG also helps to quickly restore surfactant films after film collapse. Thus, as far as surface tension effects go, the findings suggest that PEG might be used as a substitute for surfactant-associated protein SP-A in therapeutic surfactant products, and might also be used to reduce the amount of BLES required in clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.