Abstract

C-reactive protein (CRP) and surfactant protein A (SP-A) are phosphatidylcholine (PC) binding proteins that function in the innate host defense system. We examined the effects of CRP and SP-A on the surface activity of bovine lipid extract surfactant (BLES), a clinically applied modified natural surfactant. CRP inhibited BLES adsorption to form a surface-active film and the film's ability to lower surface tension (gamma) to low values near 0 mN/m during surface area reduction. The inhibitory effects of CRP were reversed by phosphorylcholine, a water-soluble CRP ligand. SP-A enhanced BLES adsorption and its ability to lower gamma to low values. Small amounts of SP-A blocked the inhibitory effects of CRP. Electron microscopy showed CRP has little effect on the lipid structure of BLES. SP-A altered BLES multilamellar vesicular structure by generating large, loose bilayer structures that were separated by a fuzzy amorphous material, likely SP-A. These studies indicate that although SP-A and CRP both bind PC, there is a difference in the manner in which they interact with surface films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.