Abstract

We investigate the effect of poly(ethylene glycol) (PEG) side-chain conjugation on the conformational behavior of an α-helix using molecular dynamics simulations in explicit solvents of varying hydrophobicity. Our simulations illustrate an increase in peptide helicity with increasing PEG molecular weight in the range ~400 to 1800 Da. The data with varying PEG contour lengths as well as constant force pulling simulations that allow control over the end-to-end length of PEG indicate a strong inverse correlation between peptide helicity and solvent accessible surface area (SASA). A residue-based mapping analysis reveals that the formation of a protecting PEG shell around peptide helix in water is facilitated by two distinct mechanisms that depend on the solvent environment. First, cationic residues such as lysine interact favorably with PEG due to strong polar interactions with PEG oxygen atoms. Additionally, we find that hydrophobic residues interact strongly with PEG to reduce their SASA in polar solvents by polymer shielding. Our simulations illustrate that these two mechanisms that involve side-chain chemistry and solvent polarity govern the preferred conformation of PEG on the helix surface and thus the stability of peptide secondary structure. These findings elucidate the molecular mechanisms underpinning recent experimental findings on the stability and conformational dynamics of protein-PEG conjugates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.