Abstract

IntroductionMicrofluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades of accumulated research. In contrast, the experience base is limited for materials used in microfludics chip fabrication.MethodsThe effect of different materials (PS, PMMA and perforated PMMA with a piece of PDMS underneath) on the growth and differentiation of PC12 (adrenal phaeochromocytoma) cells into neuronal-like cells was investigated using cell viability, cell cycle distribution, morphology, and gene expression analysis.Results/ConclusionsAfter differentiation, the morphology, viability and cell cycle distribution of PC12 cells grown on PS, PMMA with and without PDMS underneath was the same. By contrast, 41 genes showed different expression for PC12 cells differentiating on PMMA as compared to on PS. In contrast, 677 genes showed different expression on PMMA with PDMS underneath as compared with PC12 cells on PS. The differentially expressed genes are involved in neuronal cell development and function. However, there were also many markers for neuronal cell development and functions that were expressed similarly in cells differentiating on PS, PMMA and PMMA with PDMS underneath. In conclusion, it was shown that PMMA has a minor impact and PDMS a major impact on gene expression in PC12 cells.

Highlights

  • Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture

  • The results strongly indicated that PMMA is a good candidate for fabrication of general-purpose cell culture chips, as PMMA had no effect even on Hela cells at the molecular level or cellular function level as compared to cells growing on PS

  • The present study was designed to study PMMA as cell culture substrate and possible factors released from PDMS (Fig. 1)

Read more

Summary

Introduction

Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. While batch cultures are standardized using polystyrene (PS) flasks or microtitre plates, microfluidics devices are made of a whole range of other materials, such as poly(dimethylsiloxane) (PDMS), poly(methyl methacrylate) (PMMA), polycarbonate (PC), cyclic olefin copolymers (COC) and glass [3,4,5,6]. One reason for this is that PS is not straightforward to us for constructing microfluidics devices; the main challenge being to bond two pieces of PS together [4,7]. Due to the extensive use of PDMS and its reported negative effects on cells, it is highly important to gather as much information as possible about its effects on cells in order to be able to predict the effect of PDMS on any given assay

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.