Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) and the p53 tumor suppressor protein are both involved in the cellular response to genotoxic stress. Upon binding to the site of DNA strand breakage, PARP-1 is activated, leading to rapid and transient poly(ADP-ribosyl)ation of nuclear proteins using NAD+ as substrate. To investigate the role of PARP-1 in the p53 response to ionizing radiation in human cells, PARP-1 function was disrupted in wild-type p53 expressing MCF-7 and BJ/TERT cells using two strategies: chemical inhibition with 1,5-dihydroxyisoquinoline, and trans-dominant inhibition by overexpression of the PARP-1 DNA-binding domain. Although a number of proteins can catalyze poly(ADP-ribosyl)ation in addition to PARP-1, we show that PARP-1 is the only detectable active species in BJ/TERT and MCF-7 cells. 1,5-Dihydroxyisoquinoline treatment prior to ionizing radiation delayed and attenuated the induction of two p53-responsive genes, p21 and mdm-2, and led to suppression of the p53-mediated G1-arrest response in MCF-7 and BJ/TERT cells. Trans-dominant inhibition of PARP-1 by overexpression of the PARP-1 DNA-binding domain in MCF-7 cells also led to a delay and attenuation in p21 induction and suppression of the p53-mediated G1 arrest response to ionizing radiation. Hence, inhibition of endogenous PARP-1 function suppresses the transactivation function of p53 in response to ionizing radiation. This study establishes PARP-1 as a critical regulator of the p53 response to DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.