Abstract

Transport is one of the most important sources of environmental pollution. More and more information has shown that one of the greatest sources of emissions from transport are emissions related to the release of microplastics from tyres. This is one of the most underestimated sources of emissions into the environment. In this study, environmental samples are analysed for the presence of these particles. For this purpose, optical methods and spectroscopic methods are used. Fourier transform infrared (FTIR) spectroscopy is used to identify synthetic rubber, most likely derived from car tyres. A complementary confocal microscopy method is used to confirm the FTIR results. The soil samples and road dust from the areas with heavy traffic are tested. An average of 372 ± 50 fragments per kilogram dry weight are detected in the soil samples. In the case of samples from the road, this number is 515 ± 20 fragments per kilogram of dry matter. In the samples, most of the microplastics come from tyres, which confirms the scientists’ assumptions about the amount of emissions in the environment. More than 90% of the black fragments later identified as tyre-derived synthetic rubber are found in the samples. A greater number of microplastics are found in road dust samples than in the soil. This may be due to the direct influence of braking, which causes greater accumulation of samples at the emission source than at a short distance into the soil. There is also a noticeable difference in the size of the fraction. In the case of soils, a fraction below 50 µm accounts for the majority of cases. When one analyses road dust samples, one may observe that most of the fractions are between 50 and 200 µm. This may be due to the possibility of smaller emission particles over longer distances and the greater degradation process that occurs in soils. The microplastics from the road dust are less degraded than the microplastics from the soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.