Abstract

Measurement of Platinum Group Element (PGE: Ru, Rh, Pd, Os, Ir, and Pt) and Rhenium (Re) in environmental samples is a difficult task due to their ultra-trace level concentrations, and these metals suffer from severe isobaric and polyatomic interference. These kinds of issues have been solved for environmental samples having simple matrices such as tunnel dust and moss. However, a scope of improvement still exists in challenging sample matrices such as road dust, soil, and rocks. In this study, a method that enables measurement of PGE and Re mass fractions in road dust and rock samples is proposed. The method involves matrix removal using a cation-exchange column followed by measurement using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS, also known as ICP- QQQ-MS) with 10% NH3 in He as reactive gas in Collision/Reaction Cell. This study emphasizes that the usage of a simple cation-exchange column is an important step over the framework developed by Suoranta et al., 2012, which was developed to measure PGE and Re fractions in environmental samples having a simpler matrix such as moss samples. The method combines high pressure (130 bars) and high temperature (220 °C) digestion procedure in combination with isotope dilution (ID) as a calibration strategy, PGE and Re separation using cation exchange resin, and their measurements using ICP-MS/MS. The method was validated with road dust (BCR-723) and ultramafic komatiite (OKUM) having a complex matrix. The measured PGE and Re mass fractions of the two-measured reference material show excellent agreement with their certified values and have intermediate precisions ranging from 0.4–7.7% RSD. We conclude that the combination of single-stage cation-exchange chromatography with ID-ICP-MS/MS measurements enables measurement results with uncertainties fit for purpose for PGE and Re mass fractions in environmental samples with a complex matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.