Abstract

Much of the world's groundwater supply has been contaminated by aromatic hydrocarbons originating from anthropogenic sources. To study the occurrence and distribution characteristics of aromatic hydrocarbons in groundwater, 24 aromatic hydrocarbon compounds were selected: Five BTEX compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene), 10 alkyl-substituted benzene, and 9 halogenated aromatics. These aromatic hydrocarbons were then analyzed from 355 samples collected from across China. Results indicated that aromatic hydrocarbons were detected in 59 out of 355 samples. Of the selected aromatic hydrocarbons, BTEX compounds were detected with high frequency and at low concentrations; comparatively, halogenated aromatics were detected with low frequency and at high concentrations. The aromatic hydrocarbon characteristics found in both karst and pore groundwater samples were then determined using their respective hydrogeological conditions and corresponding human activities. In karst groundwater, BTEX compounds were the most frequently detected aromatic hydrocarbon. The high detection frequencies of aromatic hydrocarbons were caused by their rapid migration, owing to the developed conduit system in the sampled karst area. The low concentrations of aromatic hydrocarbons in karst groundwater samples were caused by low-intensity human activity along with special hydrogeological conditions with higher redox potential and the unique compositions of aromatic hydrocarbons. Alkyl-substituted aromatics and halogenated aromatics were detected at higher concentrations in pore groundwater, owing to high-intensity human activity. Aromatic hydrocarbon pollution was gradually decreased along piedmont-alluvial plain-coast line, owing to a decrease in aquifer vulnerability. These were positively correlated with the size of the aquifer's particles. Samples with a high accumulative concentration of these aromatic hydrocarbons tended to occur in pore groundwater with a high concentration of either SO42− or Cl−.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.