Abstract

The pollution characteristics of surface ozone and its response to meteorological factors and precursors were studied based on monitoring and Model-3/CMAQ modeling from May to August 2018 in Handan City, China. The monitoring results showed that the maximum daily 8-hour average ozone concentration (MDA8 O3) ranged from 38.0-238.0 μg·m-3, and the nonattainment for ozone reached 44.7% during the studied period, indicating the more severe photochemical pollution in summer in Handan City. The ozone concentration was positively correlated with temperature (R=0.74 on nonattainment days and 0.42 on attainment days), but negatively correlated with relative humidity (R=-0.63 on nonattainment days and -0.58 on attainment days), demonstrating the role of photochemistry in the surface ozone of Handan City. Moreover, the highest ozone level occurred at wind speeds higher than 2.25 m·s-1 or lower than 1.00 m·s-1 during ozone nonattainment days, which indicated that regional transport and local accumulation can both cause serious ozone pollution in the city. Regarding the response of ozone to its precursors (VOCs and NOx), model simulation results based on the brute force method showed the stronger positive sensitivity to VOCs, but a weak negative sensitivity to NOx. Therefore, reduction of anthropogenic VOCs emissions is the key to improving ozone pollution in Handan City. We used the propylene-equivalent method to identify the importance of alkene and aromatic species for ozone pollution during ozone nonattainment days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.