Abstract
The pollution characteristics of surface ozone and its response to meteorological factors were studied based on monitoring in July 2019 in Shijiazhuang City, China. Furthermore, the WRF-CMAQ model coupled with O3 isopleths (EKMA curves) were applied to explore the non-linear response relationship of O3 to precursors VOCs and NOx, aiming to identify a suitable precursor control strategy. The results showed that the days with the maximum daily 8-hour average ozone concentration (MDA8 O3) exceeded the standard by 70.9%. The nonattainment days were usually accompanied by higher temperature, lower relative humidity, and low winds, and the south and southeast winds occurred frequently. The O3 formation was in the strong VOC-limited regime in the urban area of Shijiazhuang, whereas it was in the NOx and VOCs transition regime in suburban areas. As for the urban area, under the condition of single NOx emission reduction, O3 pollution improved when continuous NOx emission reduction was higher than 50% during the nonattainment days. By contrast, during the non-polluted days, O3 concentrations would not rebound when the reduction ratio of NOx and VOCs was higher than 1. In conclusion, VOCs reduction should be the priority for emission reduction plans in urban areas, whereas all different NOx and VOCs ratios led to a decline in O3 concentration in the suburban areas, and a VOCs:NOx of 1:2 was recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.