Abstract

In order to explore the pollution characteristics and health risks of heavy metals in fugitive dust around the urban areas of Zhaotong City, road dust and soil dust samples were collected in the Zhaoyang District of Zhaotong City in May 2019. The dust samples were suspended using a particle resuspension system to obtain PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm). The concentrations of Ca, Al, Fe, Mg, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, and Pb in PM2.5 were quantified by ICP-MS and ICP-OES. By analyzing 10 types of heavy metals in PM2.5, the results showed that the average concentration of Mn was the highest in the soil fugitive dust, followed by Cr, Ni, Zn, Cu, Co, Pb, V, As, and Cd. The average concentration of Zn in the road fugitive dust was the highest, followed by Mn, Cu, Cr, Pb, Ni, As, Co, V, and Cd. The enrichment factor (EF) indicated that Cd was strongly enriched in the two types of fugitive dust. The EFs of Cu, Zn, and Pb in road fugitive dust showed a moderate enrichment, and they were higher than those in soil fugitive dust. Correlation and principal component analysis showed that heavy metals in the two types of fugitive dust were affected by coal burning sources. At the same time, heavy metals in soil fugitive dust were affected by agricultural activity sources, and heavy metals in road fugitive dust were affected by traffic sources. The results of the health risk assessment indicated that the carcinogenic risks of Cr, Co, Ni, As, and Cd in soil fugitive dust were higher than those in road fugitive dust. The non-carcinogenic risks of heavy metals in the two types of fugitive dust for children were higher than those for adults, and the non-carcinogenic risks of Cu, Zn, and Pb in road fugitive dust were higher than those in soil fugitive dust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call