Abstract

The Three Gorges Reservoir (TGR) has achieved the target of water storage of 175 m for eight consecutive years until October 2017. To study the temporal and spatial variation of nickel (Ni) in different water periods under 175 m operating conditions in the TGR area, probe the impact of a large-scale water conservancy project on the Ni enrichment, and establish the pollution evaluation system of Ni in the TGR area, we collected 173 surface sediment samples from the TGR area during four consecutive water periods from December 2015 to June 2017 and measured the Ni concentration by using inductively coupled plasma mass spectrometry (ICP-MS). The mean values of Ni in the four water periods are higher than the background value of Yangtze sediment and soil. At the spatial scale, the Ni content in the mainstream exhibits a clear upward trend from upstream to downstream and is lower than that of the tributary. The tributaries of the lower reaches shows a notably higher Ni content than the tributaries of the upper and middle reaches. At the temporal scale, the water period exerts an insignificant effect on the Ni content. The Ni content is relatively stable and shows a downward tendency at a 175 m water level. The regional geochemical baseline (RGB) value of Ni was obtained through building a geochemical baseline model in the area. The RGB values of Ni in sediments during four consecutive water periods are 47.0, 44.2, 42.9, and 41.9 mg·kg-1, respectively. The Ni contents in the middle and lower reaches of the mainstream and tributary are significantly affected by human activities. Moreover, the pollution evaluations based on global Ni background values, local background values, and geochemical baseline values as reference values were compared and the geoaccumulation index and potential ecological risk of Ni were determined to comprehensively assess its pollution risk. The assessment data indicate that Ni in the aquatic environment of the TGR area is almost uncontaminated and poses a low ecological risk, except for samples in regions around Fengdu County and Guizhou Town in the Zigui County along the mainstream, which were uncontaminated to moderately contaminated. Relative to global and regional background values, the pollution assessment results obtained using the RGB as a reference value are more scientific and better match the temporal and spatial variation of the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call