Abstract

Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives.

Highlights

  • Cultivation of transgenic crops has been a focus of Mexico’s regulatory framework for agricultural biotechnology since 1996 [1]

  • The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives

  • Mexico is considered the center of origin of maize; as such, coexistence measures must be evaluated for diverse agronomic production systems using modern transgenic and non-transgenic maize hybrids, as well as the preservation of traditional landraces

Read more

Summary

Introduction

Cultivation of transgenic crops has been a focus of Mexico’s regulatory framework for agricultural biotechnology since 1996 [1]. Since Mexico is considered the center of origin and diversity of maize [3], a primary concern of Mexico’s regulatory agencies has been the potential consequences resulting from pollen flow from transgenic maize to native sexually compatible species. Small-scale Mexican farmers typically grow local maize varieties that have been selected for higher yield potential under local biotic and abiotic stresses, appropriate maturity, response to farmers’ management practices, with particular nutrient or culinary properties and storage requirements [4]. The major protection requirements include: 1) establishing isolation zones for areas that are considered centers of origin of maize, and 2) implementing policies for protection, utilization and sustainable use of those species for which Mexico is considered the center of origin and genetic diversity

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call