Abstract
Distyly typically involves reciprocal polymorphism in stamen and style lengths and a set of associated polymorphisms of pollen and stigma characters. This flower polymorphism has been regarded as a strategy to reduce the likelihood of self- and intramorph pollination and to promote legitimate intermorph pollination. Although most distylous plants are characterized by a physiological self- and intramorph-incompatibility system, previous work on Pulmonaria affinis and other distylous Boraginaceae species have shown that self-incompatibility was not strict. In this study, we examined pollen deposition rates and the functioning of the distylous breeding system in Pulmonaria officinalis. Flowers exhibited reciprocal herkogamy and several other ancillary features of heterostyly. Controlled pollinations clearly showed weak self-incompatibility, with the LS-morph showing higher rates of seed set following self-, intramorph- and intermorph-pollinations than the SS-individuals. On the other hand, SS-pollen showed higher germination rates and pollen tube growth than that of LS-pollen. Under natural conditions, both the proficiency of legitimate pollen transfer and the proportion of deposited pollen were asymmetrical. Although SS-pollen grains showed a higher proficiency for legitimate transfer than that of LS-pollen on a per pollen basis, the ratio of legitimate to illegitimate deposited pollen on stigmas of SS-flowers markedly exceeded that of LS-flowers. The latter was explained by the higher pollen production rates of LS-individuals compared to SS-individuals. High levels of illegitimate pollen deposition on LS-stigmas, on the other hand, were attributed to the limited proboscis length of the principal pollinators and the occurrence of floral hairs at the corolla entrance of LS-flowers. This study thus indicates asymmetrical pollen transport patterns and morph-specific differences in the strength of the incompatibility system; two aspects that may affect female reproductive success and morph ratio variation under pollen limited conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have