Abstract

The present study investigates the influence of various components of wood-plastic composites (WPCs) namely wood (W), inner bark (IB), outer bark (OB), and their varied percentage mixture on the mechanical behaviour. To achieve this goal, willow W, IB and OB flours were used as reinforcements at different weight percentages (17%, 27%, and 40%) in combination with polypropylene (PP) at varying weight percentages (44%, 58%, and 64%) along with a 2% compatibilizer. These constituents were processed in a twin-screw extruder with each treatment having a distinct mass proportion of reinforcement to polypropylene. Subsequently, test samples were fabricated using an injection molding machine from the obtained pellets. The mechanical properties of the resulting biocomposites were evaluated in accordance with ASTM standards. It was observed that, the flexural and tensile characteristics of the WPCs improved by the increasing inner bark content. Based on the findings of this investigation, a formulation comprising 27% wood, 27% inner bark, 44% polypropylene and 2% compatibilizing agent (W/IB/PP/MAPP) can be recommended where high mechanical properties are required. However, the other reinforced biocomposites exhibited notably lower notched impact strength compared to pure polypropylene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call