Abstract

We present a comprehensive study of the electrical properties of bulk polycrystalline BiFe0.5Mn0.5O3, a double perovskite synthesized in high-pressure and high-temperature conditions. BiFe0.5Mn0.5O3 shows an antiferromagnetic character with TN = 288 K overlapped with an intrinsic antiferroelectricity due to the Bi(3+) stereochemical effect. Beyond this, the observation of a semiconductor-insulator transition at TP ≈ 140 K allows one to define three distinct temperature ranges with completely different electrical properties. For T > TN, electric transport follows an ordinary thermally activated Arrhenius behavior; the system behaves as a paramagnetic semiconductor. At intermediate temperatures (TP < T < TN), electric transport is best described by Mott's variable range hopping model with lowered dimensionality D = 1, stabilized by the magnetic ordering process and driven by the inhomogeneity of the sample on the B site of the perovskite. Finally, for T < TP, the material becomes a dielectric insulator, showing very unusual poling-induced soft ferroelectricity with high saturation polarization, similar to the parent compound BiFeO3. Under external electric poling, the system irreversibly evolves from antiferroelectric to polar arrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.