Abstract

In this paper, we propose a novel adaptive importance sampling (AIS) algorithm for probabilistic inference. The sampler learns a proposal distribution adaptation strategy by framing AIS as a reinforcement learning problem. Under this structure, the proposal distribution of the sampler is treated as an agent whose state is controlled using a parameterized policy. At each iteration of the algorithm, the agent earns a reward that is related to its contribution to the variance of the AIS estimator of the normalization constant of the target distribution. Policy gradient methods are employed to learn a locally optimal policy that maximizes the expected value of the sum of all rewards. Numerical simulations on two different examples demonstrate promising results for the future application of the proposed method to complex Bayesian models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.