Abstract
In modeling particle transport through a medium, the path of a particle behaves as a transient Markov chain. We are interested in characteristics of the particle's movement conditional on its starting state, which take the form of a "score" accumulated with each transition. Importance sampling is an essential variance reduction technique in this setting, and we provide an adaptive (iteratively updated) importance sampling algorithm that converges exponentially to the solution. Examples illustrating this phenomenon are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.