Abstract
Radar target characteristics need to be accurately extracted to enhance the role of high-frequency (HF) radar target recognition technology in modern radar, sea and air monitoring, and other applications. The pole characteristics of radar targets have become a mainstream research focus because of their inherent advantages for target recognition. However, existing pole extraction methods for complex targets generally have problems in early- and late-time responses aliasing and target information loss. To avoid this problem, this study proposes a new method to extract radar target poles based on the special particle swarm optimization algorithm (SPSO) and an autoregressive moving average (ARMA) model. This method, which does not involve the distinction between early-and late-time responses, is used to estimate an approximation of the entire scattering echo of the target. Then the parameters of the model are precisely optimized with the help of a particle swarm optimization algorithm combined with opposition-based learning and inertia weight decreasing. Strategy. Owing to the characteristics of the azimuth consistency of the target poles, a sliding window is used to calibrate the positions of multi-azimuth poles in the complex plane. The method was demonstrated to be feasible with good performance when it was applied to extract the pole features of ships at different azimuths in the high-frequency band.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have