Abstract

AbstractThe weak dielectric screening in 2D semiconducting transition metal dichalcogenides give rise to strongly bound quasiparticles, which provides a platform to investigate the diverse excitonic phenomena and correlated physics. However, how to effectively control these quasiparticles is still a challenge for their applications in optoelectronic and valleytronic devices. Herein, by means of fabricating monolayer WSe2 and transition metal oxide (TMO) heterostructures, polaronic trion, that is a trion dressed with soft rotational optical (RO) phonons, is realized due to the strong interfacial coupling. This Fröhlich bound state of trion dramatically increases the trion binding energy (BE) from room temperature to 65 meV at 80 K in WSe2/LaAlO3 (LAO). However, the increase of the trion BE for WSe2/SrTiO3 (STO) occurs below the phase transition temperature. This work expands the possibilities of the TMDs/TMOs heterostructures and promotes the development of 2D van der Waals materials for quasiparticle‐based devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call