Abstract
We investigated the excited-state dynamics of a conjugated polymer (CP:P3HT)-based ternary hybrid system containing P3HT-coated gold nanoparticles and quantum dots. Transient absorption spectroscopy results revealed that polaron pairs (PPs) originating from nonrelaxed singlet (S1) excitons of the CP aggregate in the ternary system have shorter electron-hole separation distances than those of PPs in the neat CP aggregate because of the photophysical effects of plasmonic and semiconductor nanocrystals. In particular, the shorter electron-hole distances of PPs led to more back-recombination to S1 excitons than dissociation into positive polarons in the ternary system, resulting in increased S1 radiative recombination compared with that in the neat CP system. Thus, the photoluminescence intensity of the CP aggregate in the ternary system increased. Our findings provide new insights into the excited-state dynamics of CPs and pave the way for the development of next-generation high-efficiency optoelectronic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have