Abstract

The model of electron gas situated on the two-dimensional continual cylindrical surface is suggested to describe a polaron in the single-walled nanotube made of polar material. The problem on weak-coupling polaron is solved using perturbation theory. Analytical expression for the polaron energy shift of the subband is found in the case of bulk phonon approximation and the case when longitudinal optical (LO) phonons are confined on the cylinder's surface. It is shown that in the second case the polaron effect is negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.