Abstract

Within the framework of effective mass approximation, the scattering rate via longitudinal optical (LO) phonon emission for an electron and the mean scattering rate via LO phonons emission for electrons initially in the first excited sub-band and finally in the ground sub-band in [Formula: see text] stepped quantum well (QW) is calculated adopting the shooting method and Fermi’s golden rule. The results show that the scattering rate and the mean scattering rate are highly dependent on alloy compositions, well width, initial electron energy, electron temperature and sub-band separation [Formula: see text] between the ground sub-band and the first excited sub-band. When [Formula: see text] is larger than the LO phonon energy, the scattering rate and the mean scattering rate increases with increasing Ga composition, decreasing As composition and increasing well width. However, when [Formula: see text] is smaller than the LO phonon energy, its change tendency is contrary. The scattering rate increases with decreasing initial electron energy if the separation between the initial electron energy and the ground state energy [Formula: see text] is not smaller than the LO phonon energy. The scattering rate and the mean scattering rate increases with rising electron temperature. The mean scattering rate reaches the maximum value when [Formula: see text] is equal to the LO phonon energy. The interruption in the scattering rate happens when the separation between the initial electron energy and [Formula: see text] is smaller than the LO phonon energy. The rapid decrease of the mean scattering rate happens when [Formula: see text] is smaller than the LO phonon energy if [Formula: see text] continues decreasing. In addition, both the scattering rate and the mean scattering rate show little change with different stepped layer widths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call