Abstract

The host-guest properties of calix[6]tren 1 have been evaluated. The receptor is based on a calix[6]arene that is covalently capped at the narrow rim by a tren unit. As a result, the system presents a concave hydrophobic cavity with, at its bottom, a grid-like nitrogenous core. Despite its well-defined cavity and opening to the outside at the large rim, 1 did not behave as a good receptor for neutral molecules in chloroform. However, it exhibited efficient endo-complexation of ammonium guests. By contrast, the per-protonated host, 1.4H(+), behaved as a remarkable receptor for small organic molecules. The complexation is driven by a strong charge-dipole interaction and hydrogen bonds between the polar guest and the tetracationic cap of the calixarene. Finally, coordination of Zn(2+) to the tren core led to the asymmetrization of calixarene cavity and to the strong but selective endo-binding of neutral ligands. This study emphasizes the efficiency of a receptor presenting a concave hydrophobic cavity that is polarized at its bottom. The resulting combination of charge-dipole, hydrogen bonding, CH-pi, and van der Waals interactions highly stabilizes the supramolecular architectures. Also, importantly, the tren cap allows the tuning of the polarization, offering either a basic (1), a highly charged and acidic (1.4H(+)), or a coordination (1.Zn(2+)) site. As a result, the system proved to be highly versatile, tunable, and interconvertible in solution by simple addition of protons, bases, or metal ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.