Abstract

We present an analytical study of effects from circularly polarized light illumination on controlling spin-valley currents in a dual ferromagnetic-gated silicene. Two different perpendicular electric fields are applied into the ferromagnetic (FM) gates and the photo-irradiated normal (NM) area between the gates. One parallel (P) and two anti-parallel (AP) configurations of exchange fields applied along with chemical potential to the gates are used in this investigation. Interestingly, the studied junction might give rise to polarized-photon frequency filter. Spin-valley filtering can be achieved at the off-resonant frequency region with appropriate direction of electric fields and the configuration of exchange fields (AP-1 or AP-2). Under the photo irradiation, this study found that tunneling magnetoresistance (TMR) is controllable to achieve giant magnetoresistance (GMR) by adjusting electric fields or chemical potentials. Our study suggests the potential of photo-sensing devices in spin-valleytronics realm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call