Abstract
The effect of changing growth conditions on the diameter of rod-shaped bacteria was studied in vivo with the use of polarized light scattering. The value of a ratio of scattering matrix elements was measured as a function of scattering angle at various times after nutritional "upshift" for two strains of Escherichia coli cells. The peak locations of the scattering function were calibrated against the diameter for rod-shaped bacteria. The peaks moved toward smaller angles as a function of time after upshift, indicating that the diameter was increasing. Under special conditions, substantial peak shifts occurred within a few minutes of growth condition change, indicating a rapid onset of growth in diameter. The rate of increase of the diameters after upshift was obtained from the angular shift of peak location. This rate was approximately 14 nm/min for E. coli K12 and approximately 9 nm/min for E. coli B/r at 37 degrees C. The rate of diameter increase is smaller at lower temperatures. Experiments with Bacillus megaterium showed that any diameter change after nutritional upshift at 37 degrees C is limited to at most a very small increase, at least for the strain and medium tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.